5 years ago

Centromeric DNA Facilitates Nonconventional Yeast Genetic Engineering

Centromeric DNA Facilitates Nonconventional Yeast Genetic Engineering
Yutong Wu, Mingfeng Cao, Andrew Josef Severin, Arun Somwarpet Seetharam, Meirong Gao, Carmen Lorena Lopez-Garcia, Zengyi Shao
Many nonconventional yeast species have highly desirable features that are not possessed by model yeasts, despite that significant technology hurdles to effectively manipulate them lay in front. Scheffersomyces stipitis is one of the most important exemplary nonconventional yeasts in biorenewables industry, which has a high native xylose utilization capacity. Recent study suggested its much better potential than Saccharomyces cerevisiae as a well-suited microbial biomanufacturing platform for producing high-value compounds derived from shikimate pathway, many of which are associated with potent nutraceutical or pharmaceutical properties. However, the broad application of S. stipitis is hampered by the lack of stable episomal expression platforms and precise genome-editing tools. Here we report the success in pinpointing the centromeric DNA as the partitioning element to guarantee stable extra-chromosomal DNA segregation. The identified centromeric sequence not only stabilized episomal plasmid, enabled homogeneous gene expression, increased the titer of a commercially relevant compound by 3-fold, and also dramatically increased gene knockout efficiency from <1% to more than 80% with the expression of CRISPR components on the new stable plasmid. This study elucidated that establishment of a stable minichromosome-like expression platform is key to achieving functional modifications of nonconventional yeast species in order to expand the current collection of microbial factories.

Publisher URL: http://dx.doi.org/10.1021/acssynbio.7b00046

DOI: 10.1021/acssynbio.7b00046

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.