5 years ago

Resource Competition Shapes the Response of Genetic Circuits

Resource Competition Shapes the Response of Genetic Circuits
Domitilla Del Vecchio, Yili Qian, José I. Jiménez, Hsin-Ho Huang
A common approach to design genetic circuits is to compose gene expression cassettes together. While appealing, this modular approach is challenged by the fact that expression of each gene depends on the availability of transcriptional/translational resources, which is in turn determined by the presence of other genes in the circuit. This raises the question of how competition for resources by different genes affects a circuit’s behavior. Here, we create a library of genetic activation cascades in E. coli bacteria, where we explicitly tune the resource demand by each gene. We develop a general Hill-function-based model that incorporates resource competition effects through resource demand coefficients. These coefficients lead to nonregulatory interactions among genes that reshape the circuit’s behavior. For the activation cascade, such interactions result in surprising biphasic or monotonically decreasing responses. Finally, we use resource demand coefficients to guide the choice of ribosome binding site and DNA copy number to restore the cascade’s intended monotonically increasing response. Our results demonstrate how unintended circuit’s behavior arises from resource competition and provide a model-guided methodology to minimize the resulting effects.

Publisher URL: http://dx.doi.org/10.1021/acssynbio.6b00361

DOI: 10.1021/acssynbio.6b00361

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.