5 years ago

A Glucose-Sensing Toggle Switch for Autonomous, High Productivity Genetic Control

A Glucose-Sensing Toggle Switch for Autonomous, High Productivity Genetic Control
Grace Kapov, Keith E. J. Tyo, William Bothfeld
Many biosynthetic strategies are coupled to growth, which is inherently limiting, as (1) excess feedstock (e.g., sugar) may be converted to biomass, instead of product, (2) essential genes must be maintained, and (3) growth toxicity must be managed. A decoupled growth and production phase strategy could avoid these issues. We have developed a toggle switch that uses glucose sensing to enable this two-phase strategy. Temporary glucose starvation precisely and autonomously activates product pathway expression in rich or minimal media, obviating the requirement for expensive inducers. The switch remains stably in the new state even after reintroduction of glucose. In the context of polyhydroxybutyrate (PHB) biosynthesis, our system enables shorter growth phases and comparable titers to a constitutively expressing PHB strain. This two-phase production strategy, and specifically the glucose toggle switch, should be broadly useful to initiate many types of genetic program for metabolic engineering applications.

Publisher URL: http://dx.doi.org/10.1021/acssynbio.6b00257

DOI: 10.1021/acssynbio.6b00257

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.