5 years ago

Quantum Cascade Laser Spectral Histopathology: Breast Cancer Diagnostics Using High Throughput Chemical Imaging

Quantum Cascade Laser Spectral Histopathology: Breast Cancer Diagnostics Using High Throughput Chemical Imaging
Peter Gardner, Michael J. Pilling, Alex Henderson
Fourier transform infrared (FT-IR) microscopy coupled with machine learning approaches has been demonstrated to be a powerful technique for identifying abnormalities in human tissue. The ability to objectively identify the prediseased state and diagnose cancer with high levels of accuracy has the potential to revolutionize current histopathological practice. Despite recent technological advances in FT-IR microscopy, sample throughput and speed of acquisition are key barriers to clinical translation. Wide-field quantum cascade laser (QCL) infrared imaging systems with large focal plane array detectors utilizing discrete frequency imaging have demonstrated that large tissue microarrays (TMA) can be imaged in a matter of minutes. However, this ground breaking technology is still in its infancy, and its applicability for routine disease diagnosis is, as yet, unproven. In light of this, we report on a large study utilizing a breast cancer TMA comprised of 207 different patients. We show that by using QCL imaging with continuous spectra acquired between 912 and 1800 cm–1, we can accurately differentiate between 4 different histological classes. We demonstrate that we can discriminate between malignant and nonmalignant stroma spectra with high sensitivity (93.56%) and specificity (85.64%) for an independent test set. Finally, we classify each core in the TMA and achieve high diagnostic accuracy on a patient basis with 100% sensitivity and 86.67% specificity. The absence of false negatives reported here opens up the possibility of utilizing high throughput chemical imaging for cancer screening, thereby reducing pathologist workload and improving patient care.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b00426

DOI: 10.1021/acs.analchem.7b00426

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.