3 years ago

Generation and Characterization of Gas-Phase Doubly Charged Biradical Peptide Ions (M2+••)

Generation and Characterization of Gas-Phase Doubly Charged Biradical Peptide Ions (M2+••)
Y. L. Winnie Hung, Y. L. Elaine Wong, T.-W. Dominic Chan, Ri Wu, Xiangfeng Chen, Hoi Sze Yeung
The gas-phase chemistry of peptide radical ions is attracting considerable interest in the fields of biology and mass spectrometry owing to its capability to provide sequence information on peptides and proteins. In this study, we observed that doubly charged peptide ions (M2+) can be produced from the collision-induced dissociation (CID) of Hg(II)-adducted peptide ions. The chemical nature and, thus, the dissociation pathways of this hydrogen-deficient biradical M2+ species is intriguing. We investigated the generation and dissociation behavior of this M2+ species under electron-capture dissociation (ECD) and CID conditions. The side-chain loss in the CID of the charge-reduced M+• ions formed by single-electron capture suggested that M2+ existed as a biradical ion. This ion underwent the combination of the two radical sites and conversion to hydrogen surplus species through structural rearrangement with increased energies. This study demonstrated a promising method to generate reactive doubly charged biradical precursor ions and, thus, help characterize novel biomolecules.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01808

DOI: 10.1021/acs.analchem.7b01808

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.