5 years ago

Introducing Cobalt(II) Porphyrin/Cobalt(III) Corrole Containing Transducers for Improved Potential Reproducibility and Performance of All-Solid-State Ion-Selective Electrodes

Introducing Cobalt(II) Porphyrin/Cobalt(III) Corrole Containing Transducers for Improved Potential Reproducibility and Performance of All-Solid-State Ion-Selective Electrodes
Giuseppe Pomarico, Emilia Stelmach, Krzysztof Maksymiuk, Marcin Wojciechowski, Mario L. Naitana, Ewa Jaworska, Agata Michalska, Ewa Bulska, Roberto Paolesse
A novel solid contact type for all-solid-state ion-selective electrodes is introduced, yielding high stability and reproducibility of potential readings between sensors as well as improved analytical performance. The transducer phase herein proposed takes advantage of the presence of porphyrinoids containing the same metal ion at different oxidation states. In contrast to the traditional approach, the compounds of choice are not a redox pair; although they have different oxidation states, they cannot be electrochemically driven one to another. The compounds of choice were cobalt(II) porphyrin and cobalt(III) corrole—both characterized by a high stability of the coordinated metal ions in their respective redox states and electrical neutrality, as well as relatively high lipophilicity. The porphyrinoids were used together with carbon nanotubes to yield transducer layers for ion-selective electrodes. As a result, we obtained a high stability of potential readings of the resulting ion-selective electrodes together with good reproducibility between different sensor batches. Moreover, advantageously the presence of porphyrinoids in the transducer phase results in improvement of the analytical performance of the sensors: linear response range and selectivity due to interactions with membrane components, resulting in tailoring of ion fluxes through the membrane phase. Thus, carbon nanotubes with the cobalt(II) porphyrin/cobalt(III) corrole system are promising alternatives for existing transducer systems for potentiometric sensors.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01027

DOI: 10.1021/acs.analchem.7b01027

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.