4 years ago

Development of a Data-Independent Targeted Metabolomics Method for Relative Quantification Using Liquid Chromatography Coupled with Tandem Mass Spectrometry

Development of a Data-Independent Targeted Metabolomics Method for Relative Quantification Using Liquid Chromatography Coupled with Tandem Mass Spectrometry
Zhi Zhou, Jing Xu, Jiuming He, Wei Yang, Lvhua Wang, Ruiping Zhang, Nan Bi, Yanhua Chen, Zeper Abliz
Quantitative metabolomics approaches can significantly improve the repeatability and reliability of metabolomics investigations but face critical technical challenges, owing to the vast number of unknown endogenous metabolites and the lack of authentic standards. The present study contributes to the development of a novel method known as “data-independent targeted quantitative metabolomics” (DITQM), which was used to investigate the label-free quantitative metabolomics of multiple known and unknown metabolites in biofluid samples. This approach initially involved the acquisition of MS/MS data for all metabolites in biosamples using a sequentially stepped targeted MS/MS (sst-MS/MS) method, in which multiple product ion scans were performed by selecting all ions in the targeted mass ranges as the precursor ions. Subsequently, scheduled multiple reaction monitoring (MRM) by LC-MS/MS of the metabolome was established for 1658 characteristic ion pairs of 1324 metabolites. For sensitive and accurate quantification of these metabolites, mixed calibration curves were generated using sequentially diluted standard reference plasma samples using established MRM methods. Relative concentrations of all metabolites in each sample were calculated without using individual authentic standards. To evaluate the reliability and applicability of this new method, the performance of DITQM was validated by comparison to absolute quantification of 12 acylcarnitines using authentic standards and traditional metabolomics analysis for lung cancer. The results proved that the DITQM protocol is more reliable and can significantly improve clustering effects and repeatability in biomarker discovery. In this study, we established a novel methodology to standardize and quantify large-scale metabolome, providing a new choice for metabolomics research and its clinical applications.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.6b04727

DOI: 10.1021/acs.analchem.6b04727

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.