3 years ago

Anaconda: AN automated pipeline for somatic COpy Number variation Detection and Annotation from tumor exome sequencing data

Anaconda: AN automated pipeline for somatic COpy Number variation Detection and Annotation from tumor exome sequencing data
Yuanwei Zhang, Xiaohua Jiang, Ao Li, Asim Ali, Qinghua Shi, Zhenghua Yu, Rongjun Ban, Jianing Gao, Qiguang Zang, Huan Zhang, Changlin Wan
Copy number variations (CNVs) are the main genetic structural variations in cancer genome. Detecting CNVs in genetic exome region is efficient and cost-effective in identifying cancer associated genes. Many tools had been developed accordingly and yet these tools lack of reliability because of high false negative rate, which is intrinsically caused by genome exonic bias. To provide an alternative option, here, we report Anaconda, a comprehensive pipeline that allows flexible integration of multiple CNV-calling methods and systematic annotation of CNVs in analyzing WES data. Just by one command, Anaconda can generate CNV detection result by up to four CNV detecting tools. Associated with comprehensive annotation analysis of genes involved in shared CNV regions, Anaconda is able to deliver a more reliable and useful report in assistance with CNV-associate cancer researches. Anaconda package and manual can be freely accessed at http://mcg.ustc.edu.cn/bsc/ANACONDA/ .
You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.