5 years ago

Boosting the Signal Intensity of Nanoelectrospray Ionization by Using a Polarity-Reversing High-Voltage Strategy

Boosting the Signal Intensity of Nanoelectrospray Ionization by Using a Polarity-Reversing High-Voltage Strategy
Xiang Fang, Yingchen Zhao, Sijian Ye, Xingchuang Xiong, Xiaoyun Gong
Continuous efforts have been made to further improve the performance of nano-ESI. In this work, we made use of a polarity-reversing high-voltage strategy for the generation of nano-ESI (PR-nESI). Typically, a negative high voltage of −3.0 kV was first applied to the electrode and maintained for 6 s. Then the polarity was reversed, and a positive high voltage of +1.75 kV was applied for the generation of electrospray. Compared with conventional nano-ESI, PR-nESI significantly enhanced the signal intensity of protonated protein ions. The signal-to-noise ratio (S/N) of protonated protein ions was increased by 1–2 orders of magnitude. The increase of S/N was even more remarkable at lower concentrations. Furthermore, PR-nESI also had a desalting effect. Metal ion adducts of proteins were effectively removed. No metal ion adducts were identified from the spectra, even if the concentration of salt was increased to the millimolar level. The performance of PR-nESI was confirmed in the detection of different molecules including proteins, peptides, amino acids, and other small-molecule compounds. The intact folded structure of proteins was preserved during PR-nESI. No unfolding was observed in the spectra. PR-nESI was further applied to the analysis of noncovalent protein–ligand complexes and protein digest. At last, investigations into the mechanism of PR-nESI were carried out. The enhancement of signal intensity and desalting effect were related to the electromigration of the solutes in solution. With all the advantages above, PR-nESI would be a promising method in the future analytical and bioanalytical applications.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b00555

DOI: 10.1021/acs.analchem.7b00555

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.