5 years ago

Synthesis, Self-Assembly, Transformation, and Functionalization of Nanoscale Artificial Allophane Spherules for Catalytic Applications

Synthesis, Self-Assembly, Transformation, and Functionalization of Nanoscale Artificial Allophane Spherules for Catalytic Applications
Yao Zhou, Hua Chun Zeng
Mesoporous materials with large surface area and chemical inertness are of great importance, and currently prevailing synthetic approaches involve usages of micelles as pore-directing agents to create such mesopores. In this work, allophanes, which are hollow aluminosilicate spherules of 3.5–5.5 nm in size, have been synthesized and assembled simultaneously for the first time in a controlled manner to generate mesoporous spherical allophane assemblages (MSAAs) with diameters of 445 ± 40 nm, specific surface area as high as 1032 m2/g, pore volume 1.104 mL/g at P/P0 = 0.975, and average mesopore size at 3.4 nm. Furthermore, the thus-prepared MSAA could be doped with transition metal ions to create a series of isomorphous derivatives; they could also be converted to aluminum-based hierarchical assemblages of layered double hydroxide easily. Different from the conventional channel-like mesopores, the new mesoporosity attained in MSAA is easily accessible because their mesopores are generated from the interparticle spaces of spherical building units of hollow spherules. Therefore, the mesoporous MSAA provides an excellent platform for construction of integrated nanocatalysts. Highly dispersed noble metal nanoclusters such as Pt, Au, and Pd could be deposited on the surface or in the interior mesopores of the MSAA. Excellent activity and stability of MSAA-based catalysts for Suzuki couplings and electrochemical sensing of H2O2 have been demonstrated using Pd/MSAA and Au/MSAA nanocomposites, respectively.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b01956

DOI: 10.1021/acs.chemmater.7b01956

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.