5 years ago

Mutualistic interactions amplify saltmarsh restoration success

Tjisse Heide, Jasper R. H. Hoogveld, Brian R. Silliman, Johan Koppel, Leon P. M. Lamers, Marlous Derksen-Hooijberg, Alfons Smolders, Annieke Borst, Hélène Paoli, Christine Angelini
Mounting evidence shows that the functioning and stability of coastal ecosystems often depends critically on habitat-forming foundation species such as seagrasses, mangroves and saltmarsh grasses that engage in facultative mutualistic interactions. However, although restoration science is now gradually expanding its long-standing paradigm of minimizing competition to including intraspecific, or within species, facilitation in its designs, the potential of harnessing mutualistic interactions between species for restoration purposes remains uninvestigated. Here, we experimentally tested whether a previously documented mutualism between marsh-forming Spartina alterniflora (cordgrass) and Geukensia demissa (mussels) can increase restoration success in degraded US saltmarshes. We found that co-transplanted mussels locally increased nutrients and reduced sulphide stress, thereby increasing cordgrass growth and clonal expansion by 50%. We then removed above-ground vegetation and mussels to simulate a disturbance event and discovered that cordgrass co-transplanted with mussels experienced three times greater survival than control transplants. Synthesis and applications. Our findings indicate that mussels amplify cordgrass re-colonization and resilience over spatial and temporal scales that exceed those of their actual mutualistic interaction. By experimentally demonstrating that mutualistic partners can enable foundation species to overcome stress barriers to establish and persist, we highlight that coastal restoration needs to evolve beyond the sole inclusion of intraspecific-positive interactions. In particular, we suggest that integrating mutualisms in restoration designs may powerfully enhance long-term restoration success and ecosystem resilience in the many coastal ecosystems where mutualisms involving foundation species are important ecosystem-structuring interactions.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/1365-2664.12960

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.