4 years ago

Quantitative Analysis of the Morphology of {101} and {001} Faceted Anatase TiO2 Nanocrystals and Its Implication on Photocatalytic Activity

Quantitative Analysis of the Morphology of {101} and {001} Faceted Anatase TiO2 Nanocrystals and Its Implication on Photocatalytic Activity
Lei Yu, Rui Peng, Jong Keum, Zili Wu, Shuo Qian, Jue Liu, Beth S. Guiton, Guo Shiou Foo, Katharine Page, Daniel Olds
The atomistic structure and morphology (shape and size) of nanomaterials have strong influences on their physical and chemical properties. However, many characterization techniques focus exclusively on one length-scale regime or another when developing quantitative morphology/structural models. In this article, we demonstrate that powder X-ray diffraction and neutron pair distribution function (PDF) can be used to obtain accurate average morphology and atomistic structure of {001} and {101} faceted anatase TiO2 nanocrystals based on differential evolution refinements using Debye scattering equation calculations. It is also demonstrated that the morphology polydispersity of TiO2 nanocrystals can be effectively obtained from the diffraction data via a numerical refinement routine. The morphology refinement results are in good agreement with those from transmission electron microscopy and the modeling of small angle neutron scattering data. This method is successfully used to quantify the facet-specified photocatalytic hydrogen evolution activity of anatase TiO2 nanocrystals with different {001} to {101} ratios. It is found that the sample with an intermediate amount of both {001} and {101} facets shows the best photocatalytic hydrogen evolution reaction (HER) activity. It is expected that the simultaneous structure and morphology refinement technique can be generally used to study the relationship between morphology and functionality of nanomaterials.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b01172

DOI: 10.1021/acs.chemmater.7b01172

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.