3 years ago

Redox Interfaces for Electrochemically Controlled Protein–Surface Interactions: Bioseparations and Heterogeneous Enzyme Catalysis

Redox Interfaces for Electrochemically Controlled Protein–Surface Interactions: Bioseparations and Heterogeneous Enzyme Catalysis
Timothy F. Jamison, Christopher C. Gonzalez, Jonathan Thomas, Jonas Hübner, Eric Zhu, Xiao Su, Monique J. Kauke, Matthias Franzreb, Luiza Dalbosco, T. Alan Hatton
Redox-active materials are an attractive platform for engineering specific interactions with charged species by electrochemical control. We present nanostructured redox-electrodes, functionalized with poly(vinyl)ferrocene embedded in a carbon nanotube matrix, for modulating the adsorption and release of proteins through electrochemical potential swings. The affinity of the interface toward proteins increased dramatically following oxidation of the ferrocenes, and, due to the Faradaic nature of the organometallic centers, the electrodes were maintained at sufficiently low overpotentials to ensure the preservation of both protein structure and catalytic activity. Our system was selective for various proteins based on size and charge distribution, and exhibited fast kinetics (<120 s for a charge–discharge cycle) and high uptake capacities (>200 mg/g) under moderate overpotentials (+0.4 V vs Ag/AgCl), as well as remarkable stability for binding under ferrocene oxidation conditions. The preservation of bioactivity and protein structure at the interface indicates the potential for these redox-mediated surfaces to be used as heterogeneous supports for enzyme catalysis. This work draws on the molecular selectivity of ferrocene-functionalized materials toward organic anion groups, and demonstrates that these smart redox-active materials can be used for modulation of the macroscopic affinity of surfaces for charged biomacromolecules to enhance processes such as bioseparations, electrochemically controlled protein purification, biocatalysis, and electrochemically mediated drug release.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b01699

DOI: 10.1021/acs.chemmater.7b01699

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.