3 years ago

Modelling plant interspecific interactions from experiments of perennial crop mixtures to predict optimal combinations

Valentín Picasso, Virginia Halty, Hugo Fort, Mauricio Tejera, Matías Valdés
The contribution of plant species richness to productivity and ecosystem functioning is a long standing issue in Ecology, with relevant implications for both conservation and agriculture. Both experiments and quantitative modelling are fundamental to the design of sustainable agroecosystems and the optimization of crop production. We modelled communities of perennial crop mixtures by using a generalized Lotka-Volterra model, i.e. a model such that the interspecific interactions are more general than purely competitive. We estimated model parameters -carrying capacities and interaction coefficientsfrom, respectively, the observed biomass of monocultures and bicultures measured in a large diversity experiment of seven perennial forage species in Iowa, United States. The sign and absolute value of the interaction coefficients showed that the biological interactions between species pairs included amensalism, competition, and parasitism (asymmetric positive-negative interaction), with various degrees of intensity. We tested the model fit by simulating the combinations of more than two species and comparing them with the polycultures experimental data. Overall, theoretical predictions are in good agreement with the experiments. Using this model, we also simulated species combinations that were not sown. From all possible mixtures (sown and not sown) we identified which are the most productive species combinations. Our results demonstrate that a combination of experiments and modelling can contribute to the design of sustainable agricultural systems in general and to the optimization of crop production in particular. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/eap.1605

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.