5 years ago

Biogeography of cryoconite forming cyanobacteria on polar and Asian glaciers

Tristram Irvine-Fynn, Takahiro Segawa, Kotaro Fukui, Arwyn Edwards, Takahiro Yonezawa, Jun Uetake, Nozomu Takeuchi, Ayumi Akiyoshi, Zhongqin Li, Sota Tanaka
Aim Cryoconite, a microbe-mineral aggregate found on glaciers worldwide, is formed by microbial phototrophs, principally cyanobacteria. Despite their ecological importance in supraglacial environments, the phylogeographical distributions of supraglacial cyanobacteria are poorly understood. Here, we investigate the biogeographical distribution of cyanobacteria on glaciers in the Antarctic, Arctic and Asia. Location Glaciers in the Antarctic, Arctic and Asia. Methods We analysed contiguous sequences of 16S rRNA genes and 16S–23S internal transcribed spacer (ITS) regions, determined by a long read strategy and single-filament PCR analysis in 38 glacial samples. We analysed cyanobacterial distribution patterns and genetic differentiation. Results The cyanobacterial 16S rRNA gene sequences were grouped into 20 operational taxonomic units (OTUs), and the six major OTUs that accounted for 88% of sequences were distributed broadly from polar to Asian glaciers, suggesting that they are cosmopolitan at the species level. However, analysis of the more variable ITS region revealed geographical differentiation at the strain level. Nineteen OTUs, including the six major OTUs, showed considerable genetic differentiation among geographical regions; at the population level, they are, thus, geographically restricted. Only one of the phylotype exhibits a population structure which does not show a relationship with geographical distribution, suggesting that is cosmopolitan, even at the strain level. Main conclusions Our 16S rRNA gene analyses suggest a global distribution of species of cyanobacteria colonizing glacier surfaces; however, the 16S–23S ITS regions revealed that most of the phylotypes are fundamentally endemic to particular areas at the population level and indicate limited migration among regions. Our result suggests that selection pressures among geographical regions are strong driving forces shaping genetic structure in cyanobacteria.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/jbi.13089

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.