3 years ago

Overexpression of DEMETER, a DNA demethylase, promotes early apical bud maturation in poplar

Pablo González-Melendi, José M. Ramos-Sánchez, Matias Kirst, Christopher Dervinis, Isabel Allona, Alicia Moreno-Cortés, Mariano Perales, Daniel Conde
The transition from active growth to dormancy is critical for the survival of perennial plants. We identified a DEMETER-like (CsDML) cDNA from a winter-enriched cDNA subtractive library in chestnut (Castanea sativa Mill.), an economically and ecologically important species. Next, we characterized this DNA demethylase and its putative orthologue in the more experimentally tractable hybrid poplar (Populus tremula x alba), under the signals that trigger bud dormancy in trees. We performed phylogenetic and protein sequence analysis, gene expression profiling and 5mC immunodetection studies to evaluate the role of CsDML and its homologue in poplar, PtaDML6. Transgenic hybrid poplars overexpressing CsDML were produced and analyzed. Short days (SD) and cold temperatures induced CsDML and PtaDML6. Overexpression of CsDML accelerated SD-induced bud formation, specifically from stage 1 to 0. Bud acquired a red-brown coloration earlier than wild type (WT) plants, alongside with the up regulation of flavonoid biosynthesis enzymes and accumulation of flavonoids in the SAM and bud scales. Our data shows that the CsDML gene induces bud formation needed for the survival of the apical meristem under the harsh conditions of winter.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/pce.13056

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.