3 years ago

The role of brassinosteroids in the regulation of the plasma membrane H+-ATPase and NADPH oxidase under cadmium stress

The present research aim was to define the role of brassinosteroids (BRs) in plant adaptation to cadmium stress. We observed a stimulating effect of exogenous BR on the activity of two plasma membrane enzymes which play a key role in plants adaptation to cadmium stress, H+-ATPase (EC 3.6.3.14) and NADPH oxidase (EC 1.6.3.1). Using anti-phosphothreonine antibody we showed that modification of PM H+-ATPase activity under BR action could result from phosphorylation of the enzyme protein. Also the relative expression of genes encoding both PM H+-ATPase and NADPH oxidase was affected by BR. To confirm the role of BR in the cadmium stimulating effect on activity of both studied plasma membrane enzymes, an assay in the presence of a BR biosynthesis inhibitor (propiconazole) was performed. Moreover, as a tool in our work we used commercially available plant mutants unable to BR biosynthesis or with dysfunctional BR signaling pathway, to further confirm participation of BR in plant adaptation to heavy metal stress. Presented results demonstrate some elements of the brassinosteroid-induced pathway activated under cadmium stress, wherein H+-ATPase and NADPH oxidase are key factors.

Publisher URL: www.sciencedirect.com/science

DOI: S0168945217304508

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.