3 years ago

Plant resistance to drought depends on timely stomatal closure

Hervé Cochard, Nicolas Martin-StPaul, Sylvain Delzon
Stomata play a significant role in the Earth's water and carbon cycles, by regulating gaseous exchanges between the plant and the atmosphere. Under drought conditions, stomatal control of transpiration has long been thought to be closely coordinated with the decrease in hydraulic capacity (hydraulic failure due to xylem embolism). We tested this hypothesis by coupling a meta-analysis of functional traits related to the stomatal response to drought and embolism resistance with simulations from a soil–plant hydraulic model. We report here a previously unreported phenomenon: the existence of an absolute limit by which stomata closure must occur to avoid rapid death in drought conditions. The water potential causing stomatal closure and the xylem pressure at the onset of embolism formation were equal for only a small number of species, and the difference between these two traits (i.e. safety margins) increased continuously with increasing embolism resistance. Our findings demonstrate the need to revise current views about the functional coordination between stomata and hydraulic traits and provide a mechanistic framework for modeling plant mortality under drought conditions.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/ele.12851

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.