3 years ago

Quantifying magnetic anisotropy using X-ray and neutron diffraction

Quantifying magnetic anisotropy using X-ray and neutron diffraction
Emil Andreasen Klahn, Emil Damgaard-Møller, Lennard Krause, Iurii Kibalin, Arsen Gukasov, Shalini Tripathi, Abinash Swain, Maheswaran Shanmugam, Jacob Overgaard
In this work, the magnetic anisotropy in two iso-structural distorted tetrahedral Co(II) complexes, CoX2tmtu2 [X = Cl(1) and Br(2), tmtu = tetramethylthiourea] is investigated, using a combination of polarized neutron diffraction (PND), very low-temperature high-resolution synchrotron X-ray diffraction and CASSCF/NEVPT2 ab initio calculations. Here, it was found consistently among all methods that the compounds have an easy axis of magnetization pointing nearly along the bisector of the compression angle, with minute deviations between PND and theory. Importantly, this work represents the first derivation of the atomic susceptibility tensor based on powder PND for a single-molecule magnet and the comparison thereof with ab initio calculations and high-resolution X-ray diffraction. Theoretical ab initio ligand field theory (AILFT) analysis finds the dxy orbital to be stabilized relative to the dxz and dyz orbitals, thus providing the intuitive explanation for the presence of a negative zero-field splitting parameter, D, from coupling and thus mixing of dxy and dx2 − y2. Experimental d-orbital populations support this interpretation, showing in addition that the metal–ligand covalency is larger for Br-ligated 2 than for Cl-ligated 1.
Open access
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.