5 years ago

Metabolically Derived Lysine Acylations and Neighboring Modifications Tune the Binding of the BET Bromodomains to Histone H4

Metabolically Derived Lysine Acylations and Neighboring Modifications Tune the Binding of the BET Bromodomains to Histone H4
Brian C. Smith, Michael D. Olp, Nan Zhu
Recent proteomic studies discovered histone lysines are modified by acylations beyond acetylation. These acylations derive from acyl-CoA metabolites, potentially linking metabolism to transcription. Bromodomains bind lysine acylation on histones and other nuclear proteins to influence transcription. However, the extent bromodomains bind non-acetyl acylations is largely unknown. Also unclear are the effects of neighboring post-translational modifications, especially within heavily modified histone tails. Using peptide arrays, binding assays, sucrose gradients, and computational methods, we quantified 10 distinct acylations for binding to the bromodomain and extraterminal domain (BET) family. Four of these acylations (hydroxyisobutyrylation, malonylation, glutarylation, and homocitrullination) had never been tested for bromodomain binding. We found N-terminal BET bromodomains bound acetylated and propionylated peptides, consistent with previous studies. Interestingly, all other acylations inhibited binding of the BET bromodomains to peptides and nucleosomes. To understand how context tunes bromodomain binding, effects of neighboring methylation, phosphorylation, and acylation within histone H4 tails were determined. Serine 1 phosphorylation inhibited binding of the BRD4 N-terminal bromodomain to polyacetylated H4 tails by >5-fold, whereas methylation had no effect. Furthermore, binding of BRDT and BRD4 N-terminal bromodomains to H4K5acetyl was enhanced 1.4–9.5-fold by any neighboring acylation of lysine 8, indicating a secondary H4K8acyl binding site that is more permissive of non-acetyl acylations than previously appreciated. In contrast, C-terminal BET bromodomains exhibited 9.9–13.5-fold weaker binding for polyacylated than for monoacylated H4 tails, indicating the C-terminal bromodomains do not cooperatively bind multiple acylations. These results suggest acyl-CoA levels tune or block recruitment of the BET bromodomains to histones, linking metabolism to bromodomain-mediated transcription.

Publisher URL: http://dx.doi.org/10.1021/acs.biochem.7b00595

DOI: 10.1021/acs.biochem.7b00595

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.