5 years ago

New Insights into the Wavelength Dependence of MALDI Mass Spectrometry

New Insights into the Wavelength Dependence of MALDI Mass Spectrometry
Klaus Dreisewerd, Jens Soltwisch, Annika Koch, Marcel Niehaus, Andreas Schnapp
The interplay between the wavelength of the laser and the absorption profile of the matrix constitutes a crucial factor in matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Numerous studies have shown that typically best analytical results are obtained if the laser wavelength matches the UV absorption band of the matrix in the solid state well. However, many powerful matrices exhibit peak absorptions which differ notably from the standard MALDI laser wavelengths of 337, 349, and 355 nm, respectively. Here we used two wavelength-tunable lasers to investigate the MALDI wavelength dependence with a selected set of such matrices. We studied 3-hydroxypicolinic acid (3-HPA), 2,4,6-trihydroxyacetophenon (THAP), dithranol (1,8-dihydroxy-10H-anthracen-9-on), 2-(4′-hydroxybenzeneazo)benzoic acid (HABA), and 6-aza-2-thiothymine (ATT). For analyte systems we investigated DNA oligomers (3-HPA), phospholipids (dithranol, THAP, HABA), and non-covalent peptide–peptide and protein–peptide complexes (ATT). We recorded analyte ion and total ion counts as a function of wavelength and laser fluence between 213 and 600 nm. Although the so-generated comprehensive heat maps generally corroborated the previously made findings, several fine features became notable. For example, despite a still high optical absorption exhibited by some of the matrices in the visible wavelength range, ion yields generally dropped strongly, indicating a change in ionization mechanism. Moreover, the non-covalent complexes were optimally detected at wavelengths corresponding to a relatively low optical absorptivity of the ATT matrix, presumably because of ejection of a particular cold MALDI plume. Our comprehensive data shed useful light into the MALDI mechanisms and could assist in further methodological advancement of the technique.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01744

DOI: 10.1021/acs.analchem.7b01744

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.