3 years ago

Atomic-Thick PtNi Nanowires Assembled on Graphene for High-Sensitivity Extracellular Hydrogen Peroxide Sensors

Atomic-Thick PtNi Nanowires Assembled on Graphene for High-Sensitivity Extracellular Hydrogen Peroxide Sensors
Yingjie Li, Shaojun Guo, Sihao Zhu, Yingjun Sun, Mingchuan Luo, Qiushi Ren, Nuoyan Xu, Lei Wang, Yingnan Qin, Xiangxi Meng
H2O2 sensors with high sensitivity and selectivity are essential for monitoring the normal activities of cells. Inorganic catalytic nanomaterials show the obvious advantage in boosting the sensitivity of H2O2 sensors; however, the H2O2 detection limit of reported inorganic catalysts is still limited, which is not suitable for high-sensitivity detection of H2O2 in real cells. Herein, novel atomic-thick PtNi nanowires (NWs) were synthesized and assembled on reduced graphene oxide (rGO) via an ultrasonic self-assembly method to attain PtNi NWs/rGO composite for boosting the electroanalysis of H2O2. In 0.05 M phosphate-buffered saline (pH 7.4) solution, the as-prepared PtNi NWs/rGO shows an extraordinary performance in quantifying H2O2 in a wide range of concentrations from 1 nM to 5.3 mM. Significantly, the detection limit of PtNi NWs/rGO reaches unprecedented 0.3 nM at an applied potential of −0.6 V (vs Ag/AgCl), which enables the detection of traced amounts of H2O2 released from Raw 264.7 cells. The excellent performance of H2O2 detection on PtNi NWs/rGO is ascribed to the high-density active sites of atomic-thick PtNi NWs.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b11758

DOI: 10.1021/acsami.7b11758

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.