3 years ago

Citric Acid Modulated Growth of Oriented Lead Perovskite Crystals for Efficient Solar Cells

Citric Acid Modulated Growth of Oriented Lead Perovskite Crystals for Efficient Solar Cells
Yuki Itabashi, Henry Halim, Yunlong Guo, Eiichi Nakamura, Kazutaka Shoyama, Rui Shang, Wataru Sato
Solar cells made of lead perovskite crystals have attracted much attention for their high performance, but far less attention as a subject of crystal engineering. Here, we report that citric acid (CA) and chloride anion, working together, modulate crystal growth of CH3NH3PbI3, producing sub-mm-sized cuboid crystals—a morphology more suitable for close packing in a thin film than the commonly observed elongated dodecahedral morphology. By using a 15 wt % CA-doped precursor solution, we formed a single layer of large, flat, and oriented cuboid crystals with minimum crystal domain boundaries and maximum contact with neighboring layers, and fabricated an archetypal inverted-structured device of 4 mm2 area, which showed, reproducibly and with little hysteresis, 16.75% power conversion efficiency (PCE), 26% higher than the PCE obtained for a polycrystalline film made without CA doping. Under weaker irradiation of a 1 cm2 device, the PCE improved from 14.52% (one sun) to 20.4% (0.087 suns). Under illumination with white light emitting diode, a 10 wt % CA-doped device showed PCE of 28.1%, suggesting an advantage of PVK-SCs for indoor applications. Further studies on crystal growth modulation will be beneficial for manufacturing efficient and stable lead perovskite solar cells.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03856

DOI: 10.1021/jacs.7b03856

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.