3 years ago

Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells

Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells
Sumei Huang, Xiaohong Chen, Qi Luo, Zengbo Wang, Chenxi Zhang, Hongbing Zhu, Xueshuang Deng, Zhiqiang Li
We report systematic design and formation of plasmonic perovskite solar cells (PSCs) by integrating Au@TiO2 core–shell nanoparticles (NPs) into porous TiO2 and/or perovskite semiconductor capping layers. The plasmonic effects in the formed PSCs are examined. The most efficient configuration is obtained by incorporating Au@TiO2 NPs into both the porous TiO2 and the perovskite capping layers, which increases the power conversion efficiency (PCE) from 12.59% to 18.24%, demonstrating over 44% enhancement, compared with the reference device without the metal NPs. The PCE enhancement is mainly attributed to short-circuit current improvement. The plasmonic enhancement effects of Au@TiO2 core–shell nanosphere photovoltaic composites are explored based on the combination of UV–vis absorption spectroscopy, external quantum efficiency (EQE), photocurrent properties, and photoluminescence (PL). The addition of Au@TiO2 nanospheres increased the rate of exciton generation and the probability of exciton dissociation, enhancing charge separation/transfer, reducing the recombination rate, and facilitating carrier transport in the device. This study contributes to understanding of plasmonic effects in perovskite solar cells and also provides a promising approach for simultaneous photon energy and electron management.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08489

DOI: 10.1021/acsami.7b08489

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.