5 years ago

g-C3N4/TiO2 Mesocrystals Composite for H2 Evolution under Visible-Light Irradiation and Its Charge Carrier Dynamics

g-C3N4/TiO2 Mesocrystals Composite for H2 Evolution under Visible-Light Irradiation and Its Charge Carrier Dynamics
Tetsuro Majima, Mamoru Fujitsuka, Ossama Elbanna
The photocatalytic performance of graphitic carbon nitride (g-C3N4) has been limited to low efficiency due to fast charge recombination. Here, we constructed g-C3N4 nanosheets/TiO2 mesocrystals metal-free composite (g-C3N4 NS/TMC) to promote the efficiency of charge separation. The photocatalytic H2 evolution experiments indicate that coupling g-C3N4 NS with TMC increases photogenerated charge carriers in g-C3N4 NS/TMC composite due to efficient charge separation. g-C3N4 NS (31 wt %)/TMC shows the highest photocatalytic activity and the corresponding H2 evolution rate is 3.6 μ mol h–1. This value is 20 times larger than that of g-C3N4 NS without any noble metal cocatalyst under visible-light irradiation (λ > 420 nm). The photocatalytic activity of g-C3N4 NS/TMC (3.6 μmol h–1) is 7 times higher than that of g-C3N4 NS/P25 (0.5 μ mol h–1), confirming the importance of strong interface interaction between two-dimensional g-C3N4 NS and plate-shape TMC. Femtosecond time-resolved diffuse reflectance (fs-TDR) was employed to study the fundamental photophysical processes of bulk g-C3N4, g-C3N4 NS, and g-C3N4/TMC composite which are essential to explain the photocatalytic activity. Using fs-TDR, we demonstrate that the photocatalytic activity depends on the increased driving force for photoinduced electron transfer and a higher percentage of photogenerated charges.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08548

DOI: 10.1021/acsami.7b08548

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.