3 years ago

Synthesis and Structural and Optical Properties of Ga(As1–xPx)Ge3 and (GaP)yGe5–2y Semiconductors Using Interface-Engineered Group IV Platforms

Synthesis and Structural and Optical Properties of Ga(As1–xPx)Ge3 and (GaP)yGe5–2y Semiconductors Using Interface-Engineered Group IV Platforms
José Menéndez, Christian D. Poweleit, Patrick M. Wallace, John Kouvetakis, Patrick E. Sims, Chi Xu
Epitaxial synthesis of Ga(As1–xPx)Ge3 alloys on Si(100) substrates is demonstrated using chemical vapor deposition reactions of [D2GaN(CH3)2]2 with P(GeH3)3 and As(GeH3)3 precursors. These compounds are chosen to promote the formation of GaAsGe3 and GaPGe3 building blocks which interlink to produce the desired crystalline product. Ge-rich (GaP)yGe5–2y analogues have also been grown with tunable Ge contents up to 90% by reactions of P(GeH3)3 with [D2GaN(CH3)2]2 under similar deposition protocols. In both cases, the crystal growth utilized Ge1–xSix buffer layers whose lattice constants were specifically tuned as a function of composition to allow perfect lattice matching with the target epilayers. This approach yielded single-phase materials with excellent crystallinity devoid of mismatch-induced dislocations. The lattice parameters of Ga(As1–xPx)Ge3 interpolated among the Ge, GaAs, and GaP end members, corroborating the Rutherford backscattering measurements of the P/As ratio. A small deviation from the Vegard’s law that depends on the As/P ratio was observed and corroborated by ab initio calculations. Raman scattering shows evidence for the existence of Ga–As and Ga–P bonds in the Ge matrix. The As-rich samples exhibited photoluminescence with wavelengths similar to those observed for pure GaAsGe3, indicating that the emission profile does not change in any measurable manner by replacing As by P over a broad range up to x = 0.2. Furthermore, the photoluminescence (PL) data suggested a large negative bowing of the band gap as expected on account of a strong valence band localization on the As atoms. Spectroscopic ellipsometry measurements of the dielectric function revealed a distinct direct gap transition that closely matches the PL emission energy. These measurements also showed that the absorption coefficients can be systematically tuned as a function of composition, indicating possible applications of the new materials in optoelectronics, including photovoltaics.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09272

DOI: 10.1021/acsami.7b09272

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.