5 years ago

Design of Peptide-Based Probes for the Microscale Detection of Reactive Oxygen Species

Design of Peptide-Based Probes for the Microscale Detection of Reactive Oxygen Species
Chun-Lan Keng, Ying-Chi Lin, Wei-Lung Tseng, Chi-Yu Lu
Reactive oxygen species (ROS) can induce oxidative stress and are associated with cell death and chronic diseases in organisms. In the treatment of disease, drugs that induce ROS are associated with many side effects and unpleasant symptoms. Therefore, during the assessment of new drugs and candidate compounds, ROS generation is an issue of concern, because ROS can modify proteins, lipids, and nucleic acids within organisms and alter their biological functions. In this work, we designed a peptide-based probe for the rapid (<10 min) high-throughput survey of oxidative stress induced by clinical drugs at the microliter level. Using menadione and H2O2 as positive controls, just 100 μg/mL of the test compound and 100 μg/mL of the probe were sufficient to effectively monitor the generation of ROS, which is important as many active compounds are rare and difficult to isolate or purify. This in vitro evaluation could be used to effectively generate preliminary data before pharmacologically active candidate compounds are processed in cell-line or animal tests. Furthermore, we demonstrated that this peptide probe successfully detects ROS in biological samples.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02544

DOI: 10.1021/acs.analchem.7b02544

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.