3 years ago

Dynamics of Water Monolayers Confined by Chemically Heterogeneous Surfaces: Observation of Surface-Induced Anisotropic Diffusion

Dynamics of Water Monolayers Confined by Chemically Heterogeneous Surfaces: Observation of Surface-Induced Anisotropic Diffusion
Santiago Romero-Vargas Castrillón, Mehdi Karzar Jeddi
Water present in confining geometries plays key roles in many systems of scientific and technological relevance. Prominent examples are living cells and nanofluidic devices. Despite its importance, a complete understanding of the dynamics of water in nanoscale confinement remains elusive. In this work, we use molecular dynamics (MD) simulation to investigate the diffusive dynamics of water monolayers confined in chemically heterogeneous silica slit pores. The effect of chemical heterogeneity is systematically investigated through the fraction fSiOH of randomly distributed surface sites that possess hydroxyl functional groups. Partial hydroxylation results in heterogeneous surfaces comprising nanoscale hydrophobic and hydrophilic regions. We find that the in-plane diffusivity of water increases monotonically with fSiOH; at low surface hydroxylation (fSiOH ≤ 50%), slow water dynamics arise due to the formation of icelike structures in the hydrophobic regions, while at fSiOH ≥ 75%, surface−water H-bonds in the hydrophilic regions result in faster dynamics. We show that surface patterning with ordered hydrophobic and hydrophilic “stripes” can be used to induce one-dimensional diffusion, with water diffusing through the slit pore preferentially along the direction of the hydrophilic surface patterns.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b07454

DOI: 10.1021/acs.jpcb.7b07454

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.