3 years ago

Visualizing the Contributions of Virtual States to Two-Photon Absorption Cross Sections by Natural Transition Orbitals of Response Transition Density Matrices

Visualizing the Contributions of Virtual States to Two-Photon Absorption Cross Sections by Natural Transition Orbitals of Response Transition Density Matrices
Kaushik D. Nanda, Anna I. Krylov
Observables such as two-photon absorption cross sections cannot be computed from the wave functions of initial and final states alone because of their nonlinear nature. Rather, they depend on the entire manifold of the excited states, which follows from the familiar sum-over-states expressions of second- and higher-order properties. Consequently, the interpretation of the computed nonlinear optical properties in terms of molecular orbitals is not straightforward and usually relies on approximate few-states models. Here, we show that the two-photon absorption (2PA) transitions can be visualized using response one-particle transition density matrices, which are defined as transition density matrices between the zero-order and first-order perturbed states. We also extend the concept of natural transition orbitals to 2PA transitions. We illustrate the utility of this new tool, which provides a rigorous black box alternative to traditional qualitative few-states analysis, by considering 2PA transitions in ethylene, trans-stilbene, and para-nitroaniline.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01422

DOI: 10.1021/acs.jpclett.7b01422

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.