5 years ago

Third-Generation Light-Driven Symmetric Molecular Motors

Third-Generation Light-Driven Symmetric Molecular Motors
G. Henrieke Heideman, Mu-Chieh Chang, Jos C. M. Kistemaker, Alexander T. Wolters, Johan Visser, Pieter van der Meulen, Peter Štacko, Ben L. Feringa, Edwin Otten, Diederik Roke
Symmetric molecular motors based on two overcrowded alkenes with a notable absence of a stereogenic center show potential to function as novel mechanical systems in the development of more advanced nanomachines offering controlled motion over surfaces. Elucidation of the key parameters and limitations of these third-generation motors is essential for the design of optimized molecular machines based on light-driven rotary motion. Herein we demonstrate the thermal and photochemical rotational behavior of a series of third-generation light-driven molecular motors. The steric hindrance of the core unit exerted upon the rotors proved pivotal in controlling the speed of rotation, where a smaller size results in lower barriers. The presence of a pseudo-asymmetric carbon center provides the motor with unidirectionality. Tuning of the steric effects of the substituents at the bridgehead allows for the precise control of the direction of disrotary motion, illustrated by the design of two motors which show opposite rotation with respect to a methyl substituent. A third-generation molecular motor with the potential to be the fastest based on overcrowded alkenes to date was used to visualize the equal rate of rotation of both its rotor units. The autonomous rotational behavior perfectly followed the predicted model, setting the stage for more advanced motors for functional dynamic systems.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b04412

DOI: 10.1021/jacs.7b04412

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.