5 years ago

Effects of a compound from the group of substituted thiadiazines with hypothermia inducing properties on brain metabolism in rats, a study <i>in vivo</i> and <i>in vitro</i>

M. P. Moshkin, O. B. Shevelev, O. N. Chupakhin, N. B. Illarionova, A. P. Sarapultsev, D. V. Petrovski

by O. B. Shevelev, N. B. Illarionova, D. V. Petrovski, A. P. Sarapultsev, O. N. Chupakhin, M. P. Moshkin

The aim of the present study was to examine how administration of a compound of 1,3,4- thiadiazine class 2-morpholino-5-phenyl-6H-1,3,4-thiadiazine, hydrobromide (L-17) with hypothermia inducing properties affects the brain metabolism. The mechanism by which L-17 induces hypothermia is unknown; it may involve hypothalamic central thermoregulation as well as act via inhibition of energy metabolism. We tested the hypothesis that L-17 may induce hypothermia by directly inhibiting energy metabolism. The study in vivo was carried out on Sprague-Dawley adult rats. Two doses of L-17 were administered (190 mg/kg and 760 mg/kg). Brain metabolites were analyzed in control and treated groups using magnetic resonance spectroscopy, along with blood flow rate measurements in carotid arteries and body temperature measurements. Further in vitro studies on primary cultures from rat hippocampus were carried out to perform a mitochondria function test of L-17 pre-incubation (100 μM, 30 min). Analysis of brain metabolites showed no significant changes in 190 mg/kg treated group along with a significant reduction in body temperature by 1.5°C. However, administration of L-17 in higher dose 760 mg/kg provoked changes in brain metabolites indicative of neurotoxicity as well as reduction in carotid arteries flow rate. In addition, a balance change of excitatory and inhibitory neurotransmitters was observed. The L-17 pre-incubation with cell primary cultures from rat brain showed no significant changes in mitochondrial function. The results obtained in the study indicate that acute administration of L-17 190 mg/kg in rats induces mild hypothermia with no adverse effects onto brain metabolism.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0180739

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.