5 years ago

Churn prediction of mobile and online casual games using play log data

Wonjong Rhee, Seungwook Kim, Daeyoung Choi, Eunjung Lee

by Seungwook Kim, Daeyoung Choi, Eunjung Lee, Wonjong Rhee

Internet-connected devices, especially mobile devices such as smartphones, have become widely accessible in the past decade. Interaction with such devices has evolved into frequent and short-duration usage, and this phenomenon has resulted in a pervasive popularity of casual games in the game sector. On the other hand, development of casual games has become easier than ever as a result of the advancement of development tools. With the resulting fierce competition, now both acquisition and retention of users are the prime concerns in the field. In this study, we focus on churn prediction of mobile and online casual games. While churn prediction and analysis can provide important insights and action cues on retention, its application using play log data has been primitive or very limited in the casual game area. Most of the existing methods cannot be applied to casual games because casual game players tend to churn very quickly and they do not pay periodic subscription fees. Therefore, we focus on the new players and formally define churn using observation period (OP) and churn prediction period (CP). Using the definition, we develop a standard churn analysis process for casual games. We cover essential topics such as pre-processing of raw data, feature engineering including feature analysis, churn prediction modeling using traditional machine learning algorithms (logistic regression, gradient boosting, and random forests) and two deep learning algorithms (CNN and LSTM), and sensitivity analysis for OP and CP. Play log data of three different casual games are considered by analyzing a total of 193,443 unique player records and 10,874,958 play log records. While the analysis results provide useful insights, the overall results indicate that a small number of well-chosen features used as performance metrics might be sufficient for making important action decisions and that OP and CP should be properly chosen depending on the analysis goal.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0180735

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.