5 years ago

Reversible Dendrite-Free Potassium Plating and Stripping Electrochemistry for Potassium Secondary Batteries

Reversible Dendrite-Free Potassium Plating and Stripping Electrochemistry for Potassium Secondary Batteries
Yiying Wu, William D. McCulloch, Neng Xiao
Rechargeable potassium metal batteries have recently emerged as alternative energy storage devices beyond lithium-ion batteries. However, potassium metal anodes suffer from poor reversibility during plating and stripping processes due to their high reactivity and unstable solid electrolyte interphase (SEI). Herein, it is reported for the first time that a potassium bis(fluoroslufonyl)imide (KFSI)-dimethoxyethane (DME) electrolyte forms a uniform SEI on the surface of potassium enabling reversible potassium plating/stripping electrochemistry with high efficiency (∼99%) at ambient temperature. Furthermore, the superconcentrated KFSI-DME electrolyte shows excellent electrochemical stability up to 5 V (vs K/K+) which enables good compatibility with high-voltage cathodes. Full cells with potassium Prussian blue cathodes are demonstrated. Our work contributes toward the understanding of potassium plating/stripping electrochemistry and paves the way for the development of potassium metal battery technologies.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b04945

DOI: 10.1021/jacs.7b04945

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.