5 years ago

Mobile-Ion-Induced Degradation of Organic Hole-Selective Layers in Perovskite Solar Cells

Mobile-Ion-Induced Degradation of Organic Hole-Selective Layers in Perovskite Solar Cells
Rui Fu, Yicheng Zhao, Fang Lin, Edward H. Sargent, Qing Zhao, Hairen Tan, Wenke Zhou, Grant Walters, Dapeng Yu, Qi Li
Organometal halide perovskites are mixed electronic–ionic semiconductors. It is imperative to develop a deeper understanding of how ion-migration behavior in perovskites impacts the long-term operational stability of solar cells. In this work, we found that ion penetration from the perovskite layer into the adjacent organic hole-selective layer is a crucial cause of performance degradation in perovskite solar cells. The monovalent cation, namely, methylammonium (MA+), is the main ion species that penetrates into the organic hole-selective layer of Spiro-MeOTAD because of the built-in electric field during operation. The incorporation of MA+ induces deep-level defects in the Spiro-MeOTAD layer and thereby deteriorates the hole-transporting ability of Spiro-MeOTAD, degrading solar cell performance. Our work points to two ways to improve the stability of perovskite solar cells: one is to insert a compact ion-blocking layer between Spiro-MeOTAD and perovskite, and the other is to find a hole-selective layer that is insensitive to extraneous ions (MA+).

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04684

DOI: 10.1021/acs.jpcc.7b04684

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.