5 years ago

C–H Alkenylation of Heteroarenes: Mechanism, Rate, and Selectivity Changes Enabled by Thioether Ligands

C–H Alkenylation of Heteroarenes: Mechanism, Rate, and Selectivity Changes Enabled by Thioether Ligands
Brad P. Carrow, Peng Ren, Bradley J. Gorsline, Long Wang
Thioether ancillary ligands have been identified that can greatly accelerate the C–H alkenylation of O-, S-, and N-heteroarenes. Kinetic data suggest thioether–Pd-catalyzed reactions can be as much as 800× faster than classic ligandless systems. Furthermore, mechanistic studies revealed C–H bond cleavage as the turnover-limiting step, and that rate acceleration upon thioether coordination is correlated to a change from a neutral to a cationic pathway for this key step. The formation of a cationic, low-coordinate catalytic intermediate in these reactions may also account for unusual catalyst-controlled site selectivity wherein C–H alkenylation of five-atom heteroarenes can occur under electronic control with thioether ligands even when this necessarily involves reaction at a more hindered C–H bond. The thioether effect also enables short reaction times under mild conditions for many O-, S-, and N-heteroarenes (55 examples), including examples of late-stage drug derivatization.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03887

DOI: 10.1021/jacs.7b03887

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.