5 years ago

A LysM Domain-Containing Gene OsEMSA1 Involved in Embryo sac Development in Rice (Oryza sativa L.).

Li, DongChen, Lee, Guo, Zhu, Chen, Nadir, Zhang
The embryo sac plays a vital role in sexual reproduction of angiosperms. LysM domain containing proteins with multiple lysin motifs are widespread proteins and are involved in plant defense responses against fungal chitins and bacterial peptidoglycans. Various studies have reported the role of LysM domain-containing proteins in plant defense mechanisms but their involvement in sexual reproduction remains largely unknown. Here, we report the involvement of a LysM domain-containing gene, EMBRYO SAC 1 (OsEMSA1), in the sexual reproduction of rice. The gene encoded a LysM domain-containing protein that was necessary for embryo sac development and function. The gene was expressed in root, stem, leaf tissues, panicle and ovaries and had some putative role in hormone regulation. Suppression of OsEMSA1 expression resulted in a defective embryo sac with poor differentiation of gametophytic cells, which consequently failed to attract pollen tubes and so reduced the panicle seed-setting rate. Our data offers new insight into the functions of LysM domain-containing proteins in rice.

Publisher URL: http://doi.org/10.3389/fpls.2017.01596

DOI: 10.3389/fpls.2017.01596

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.