5 years ago

Cryptic diversity and discordance in single-locus species delimitation methods within horned lizards (Phrynosomatidae: Phrynosoma)

Robert W. Bryson, Christopher Blair
Biodiversity reduction and loss continues to progress at an alarming rate, and thus, there is widespread interest in utilizing rapid and efficient methods for quantifying and delimiting taxonomic diversity. Single-locus species delimitation methods have become popular, in part due to the adoption of the DNA barcoding paradigm. These techniques can be broadly classified into tree-based and distance-based methods depending on whether species are delimited based on a constructed genealogy. Although the relative performance of these methods has been tested repeatedly with simulations, additional studies are needed to assess congruence with empirical data. We compiled a large data set of mitochondrial ND4 sequences from horned lizards (Phrynosoma) to elucidate congruence using four tree-based (single-threshold GMYC, multiple-threshold GMYC, bPTP, mPTP) and one distance-based (ABGD) species delimitation models. We were particularly interested in cases with highly uneven sampling and/or large differences in intraspecific diversity. Results showed a high degree of discordance among methods, with multiple-threshold GMYC and bPTP suggesting an unrealistically high number of species (29 and 26 species within the P. douglasii complex alone). The single-threshold GMYC model was the most conservative, likely a result of difficulty in locating the inflection point in the genealogies. mPTP and ABGD appeared to be the most stable across sampling regimes and suggested the presence of additional cryptic species that warrant further investigation. These results suggest that the mPTP model may be preferable in empirical data sets with highly uneven sampling or large differences in effective population sizes of species.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/1755-0998.12658

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.