5 years ago

Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect

Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect
Manon Chogne, Yannick Moret, Julien Dhinaut
Many organisms can improve their immune response as a function of their immunological experience or that of their parents. This phenomenon, called immune priming, has likely evolved from repetitive challenges by the same pathogens during the host lifetime or across generation. All pathogens may not expose host to the same probability of re-infection, and immune priming is expected to evolve from pathogens exposing the host to the greatest probability of re-infection. Under this hypothesis, the priming response to these pathogens should be specifically more efficient and less costly than to others. We examined the specificity of immune priming within and across generations in the mealworm beetle, Tenebrio molitor, by comparing survival of individuals to infection with bacteria according to their own immunological experience or that of their mother with these bacteria. We found that insects primed with Gram-positive bacteria became highly protected against both Gram-positive and Gram-negative bacterial infections, mainly due to an induced persistent antibacterial response, which did not exist in insects primed with Gram-negative bacteria. Insects primed with Gram-positive bacteria also exhibited enhanced concentration of haemocytes, but their implication in acquired resistance was not conclusive because of the persistent antibacterial activity in the haemolymph. Offspring maternally primed with Gram-positive and Gram-negative bacteria exhibited similarly improved immunity, whatever the bacteria used for the infection. Such maternal protection was costly in the larval development of offspring, but this cost was lower for offspring maternally primed with Gram-positive bacteria. While T. molitor can develop some levels of primed response to Gram-negative bacteria, the priming response to Gram-positive bacteria was more efficient and less costly. We concluded that Gram-positive bacterial pathogens were of paramount importance in the evolution of immune priming in this insect species. Immune priming may have evolved from pathogens that repeatedly expose hosts to infections, mainly because of their persistence in the environment. The authors study shows that immune priming in the mealworm beetle mainly evolved from Gram-positive bacterial pathogens that are the most able to persist in the insect environment.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/1365-2656.12661

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.