3 years ago

Nanowires of Geobacter sulfurreducens Require Redox Cofactors to Reduce Metals in Pore Spaces Too Small for Cell Passage

Nanowires of Geobacter sulfurreducens Require Redox Cofactors to Reduce Metals in Pore Spaces Too Small for Cell Passage
managing.editor@est.acs.org (American Chemical Society)
Members of the Geobacteraceae family are ubiquitous metal reducers that utilize conductive “nanowires” to reduce Mn(IV) and Fe(III) oxides in anaerobic sediments. However, it is not currently known if and to what extent the Mn(IV) and Fe(III) oxides in soil grains and low permeability sediments that are sequestered in pore spaces too small for cell passage can be reduced by long-range extracellular electron transport via Geobacter nanowires, and what mechanisms control this reduction. We developed a microfluidic reactor that physically separates Geobacter sulfurreducens from the Mn(IV) mineral birnessite by a 1.4 μm thick wall containing <200 nm pores. Using optical microscopy and Raman spectroscopy, we show that birnessite can be reduced up to 15 μm away from cell bodies, similar to the reported length of Geobacter nanowires. Reduction across the nanoporous wall required reducing conditions, provided by Escherichia coli, and an exogenous supply of riboflavin. Our results discount electron shuttling by dissolved flavins, and instead support their role as bound redox cofactors in electron transport from nanowires to metal oxides. We also show that upon addition of a soluble electron shuttle (i.e., AQDS), reduction extends beyond the reported nanowire length up to 40 μm into a layer of birnessite.

Publisher URL: http://dx.doi.org/10.1021/acs.est.7b02531

DOI: 10.1021/acs.est.7b02531

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.