5 years ago

Emergence of the Reactivity Continuum of Organic Matter from Kinetics of a Multitude of Individual Molecular Constituents

Emergence of the Reactivity Continuum of Organic Matter from Kinetics of a Multitude of Individual Molecular Constituents
managing.editor@est.acs.org (American Chemical Society)
The reactivity continuum (RC) model is a powerful statistical approach for describing the apparent kinetics of bulk organic matter (OM) decomposition. Here, we used ultrahigh resolution mass spectrometry data to evaluate the main premise of the RC model, namely that there is a continuous spectrum of reactivity within bulk OM, where each individual reactive type undergoes exponential decay. We performed a 120 day OM decomposition experiment on lake water, with an untreated control and a treatment preexposed to UV light, and described the loss of bulk dissolved organic carbon with RC modeling. The behavior of individual molecular formulas was described by fitting the single exponential model to the change in peak intensities over time. The range of the empirically derived apparent exponential decay coefficients (kexp) was indeed continuous. The character of the corresponding distribution, however, differed from the conceptual expectations, due to the effects of intrinsic averaging, overlaps in formula-specific loss and formation rates, and the limitation of the RC model to include apparently accumulating compounds in the analysis. Despite these limitations, both the RC model-simulated and empirical (mass spectrometry-derived) distributions of kexp captured the effects of preexposure to UV light. Overall, we present experimental evidence that the reactivity continuum within bulk OM emerges from a range of reactivity of numerous individual components. This constitutes direct empirical support for the major assumption behind the RC model of the natural OM decomposition.

Publisher URL: http://dx.doi.org/10.1021/acs.est.7b02876

DOI: 10.1021/acs.est.7b02876

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.