3 years ago

Evaluating physico-chemical influences on cyanobacterial blooms using hyperspectral images in inland water, Korea

Evaluating physico-chemical influences on cyanobacterial blooms using hyperspectral images in inland water, Korea
Understanding harmful algal blooms is imperative to protect aquatic ecosystems and human health. This study describes the spatial and temporal distributions of cyanobacterial blooms to identify the relations between blooms and environmental factors in the Baekje Reservoir. Two-year cyanobacterial cell data at one fixed station and four remotely sensed distributions of phycocyanin (PC) concentrations based on hyperspectral images (HSIs) were used to describe the relation between the spatial and temporal variations in the blooms and the affecting factors. An artificial neural network model and a three-dimensional hydrodynamic model were implemented to estimate the PC concentrations using remotely sensed HSIs and simulate the hydrodynamics, respectively. The statistical test results showed that the variations in the cyanobacterial biomass depended significantly on variations in the water temperature (slope = 0.13, p-value < 0.01), total nitrogen (slope = −0.487, p-value < 0.01), and total phosphorus (slope = 20.7, p-value < 0.05), whereas the variation in the biomass was moderately dependent on the variation in the outflow (slope = −0.0097, p-value = 0.065). Water temperature was the main factor affecting variations in the PC concentrations for the three months from August to October and was significantly different for the three months (p-value < 0.01). Hydrodynamic parameters also had a partial effect on the variations in the PC concentrations in those three months. Overall, this study helps to describe spatial and temporal variations in cyanobacterial blooms and identify the factors affecting the variation in the blooms. This study may play an important role as a basis for developing strategies to reduce bloom frequency and severity.

Publisher URL: www.sciencedirect.com/science

DOI: S0043135417307819

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.