3 years ago

Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years

Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years
Liang Zhao, Huimin Wang, Mingyuan Du, Yaoming Ma, Shilong Piao, Xianzhou Zhang, Yingnian Li, Yitong Yao, Yue Li, Guangsheng Zhou, Tao Wang, Xuhui Wang, Yiping Zhang, Honglin He, Miaogen Shen, Mingguo Ma, Yanhong Tang, Weijun Luo
The uncertainties of China's gross primary productivity (GPP) estimates by global data-oriented products and ecosystem models justify a development of high-resolution data-oriented GPP dataset over China. We applied a machine learning algorithm developing a new GPP dataset for China with 0.1° spatial resolution and monthly temporal frequency based on eddy flux measurements from 40 sites in China and surrounding countries, most of which have not been explored in previous global GPP datasets. According to our estimates, mean annual GPP over China is 6.62 ± 0.23 PgC/year during 1982–2015 with a clear gradient from southeast to northwest. The trend of GPP estimated by this study (0.020 ± 0.002 PgC/year2 from 1982 to 2015) is almost two times of that estimated by the previous global dataset. The GPP increment is widely spread with 60% area showing significant increasing trend (p < .05), except for Inner Mongolia. Most ecosystem models overestimated the GPP magnitudes but underestimated the temporal trend of GPP. The monsoon affected eastern China, in particular the area surrounding Qinling Mountain, seems having larger contribution to interannual variability (IAV) of China's GPP than the semiarid northwestern China and Tibetan Plateau. At country scale, temperature is the dominant climatic driver for IAV of GPP. The area where IAV of GPP dominated by temperature is about 42%, while precipitation and solar radiation dominate 31% and 27% respectively over semiarid area and cold-wet area. Such spatial pattern was generally consistent with global GPP dataset, except over the Tibetan Plateau and northeastern forests, but not captured by most ecosystem models, highlighting future research needs to improve the modeling of ecosystem response to climate variations. We applied machine learning algorithms to develop a regional high-resolution data-oriented GPP dataset over China, which can be used to explore spatiotemporal variations of GPP and to benchmark ecosystem models as the metrics. Our dataset has similar spatial pattern but two times larger GPP trend than previous data-oriented GPP dataset (Jung et al., ). Most ecosystem models failed to capture the relationship between GPP and climatic drivers, which is partially responsible for overestimating the GPP magnitudes and underestimating the GPP trends.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/gcb.13830

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.