3 years ago

Global evaluation of a semiempirical model for yield anomalies and application to within-season yield forecasting

Global evaluation of a semiempirical model for yield anomalies and application to within-season yield forecasting
Christoph Gornott, Frank Wechsung, Bernhard Schauberger
Quantifying the influence of weather on yield variability is decisive for agricultural management under current and future climate anomalies. We extended an existing semiempirical modeling scheme that allows for such quantification. Yield anomalies, measured as interannual differences, were modeled for maize, soybeans, and wheat in the United States and 32 other main producer countries. We used two yield data sets, one derived from reported yields and the other from a global yield data set deduced from remote sensing. We assessed the capacity of the model to forecast yields within the growing season. In the United States, our model can explain at least two-thirds (63%–81%) of observed yield anomalies. Its out-of-sample performance (34%–55%) suggests a robust yield projection capacity when applied to unknown weather. Out-of-sample performance is lower when using remote sensing-derived yield data. The share of weather-driven yield fluctuation varies spatially, and estimated coefficients agree with expectations. Globally, the explained variance in yield anomalies based on the remote sensing data set is similar to the United States (71%–84%). But the out-of-sample performance is lower (15%–42%). The performance discrepancy is likely due to shortcomings of the remote sensing yield data as it diminishes when using reported yield anomalies instead. Our model allows for robust forecasting of yields up to 2 months before harvest for several main producer countries. An additional experiment suggests moderate yield losses under mean warming, assuming no major changes in temperature extremes. We conclude that our model can detect weather influences on yield anomalies and project yields with unknown weather. It requires only monthly input data and has a low computational demand. Its within-season yield forecasting capacity provides a basis for practical applications like local adaptation planning. Our study underlines high-quality yield monitoring and statistics as critical prerequisites to guide adaptation under climate change. We applied a semiempirical model to quantify weather impacts on yields globally and to forecast yields within the growing season. Our model robustly explains weather-related yield variability and is able to forecast yields up to two months before harvest in several countries. Our study also underlines high-quality yield monitoring and statistics as critical prerequisites to guide adaptation under climate change.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/gcb.13738

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.