3 years ago

The effect of Nanocrystalline cellulose/Gum Arabic conjugates in crosslinked membrane for antibacterial, chlorine resistance and boron removal performance

The effect of Nanocrystalline cellulose/Gum Arabic conjugates in crosslinked membrane for antibacterial, chlorine resistance and boron removal performance
In this work, we developed hybrid membranes integrated with Nanocrystalline cellulose (NCC)/Gum Arabic (GuA) conjugates using crosslinked Poly (vinyl alcohol) (PVA) as a matrix phase with the addition of PEO-PPO-PEO block copolymer that insured pore formation. At first, the NCC was prepared from microcrystalline cellulose via acid hydrolysis process. The performance property of hybrid NCC/GuA was measured using boron removal. The results showed that the rejection capability enhanced as compared to the control membranes, especially at 0.1wt% of NCC the selectivity is up to 92.4% with the flux rate of 21.3L/m2.h. Moreover, the GuA in NCC/GuA conjugate significantly enhances the antibacterial activity by hindering the bacterial attachment to the surface as both of them carry the negative charge. Also by providing the active sites responsible for hydrogen bonding thus enhancing the hydrophilic character resulted in increased permeation flux rate. Therefore, the NCC/GuA conjugated membranes have great potentials for boron removal.

Publisher URL: www.sciencedirect.com/science

DOI: S0304389417307033

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.