3 years ago

Spatial pattern of atmospherically deposited radiocesium on the forest floor in the early phase of the Fukushima Daiichi Nuclear Power Plant accident

Spatial pattern of atmospherically deposited radiocesium on the forest floor in the early phase of the Fukushima Daiichi Nuclear Power Plant accident
Spatial patterns of atmospherically deposited radiocesium on the forest floor and the temporal evolution were measured in two Japanese cedar stands and a secondary mixed broad-leaved forest in the early phase of the Fukushima Daiichi Nuclear Power Plant accident. In situ measurements of the 137Cs gamma count were made using a portable germanium gamma ray detector. These measurements revealed that the forest floors were contaminated with radionuclides derived from the accident. In the cedar stands, the inter-canopy area had higher 137Cs count rate relative to the under-canopy area, whereas no clear relationship was found between the radiocesium pattern and canopy cover in the mixed broad-leaved forest. Repeated radiocesium measurements revealed that the spatial pattern of radiocesium activity on the forest floor did not substantially change following additional deposition inputs. Furthermore, the magnitude of canopy cover partially explained spatial variability of the 137Cs on the forest floor in cedar stands. These results suggest that canopy structure affected the genesis of the horizontal variability of atmospherically deposited radiocesium on the forest floor during the early phase of the Fukushima accident.

Publisher URL: www.sciencedirect.com/science

DOI: S0048969717325639

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.