4 years ago

Anamorsin/Ndor1 Complex Reduces [2Fe–2S]-MitoNEET via a Transient Protein–Protein Interaction

Anamorsin/Ndor1 Complex Reduces [2Fe–2S]-MitoNEET via a Transient Protein–Protein Interaction
Lucia Banci, Francesca Camponeschi, Simone Ciofi-Baffoni
Human mitoNEET is a homodimeric protein anchored to the outer mitochondrial membrane and has a C-terminal [2Fe–2S] binding domain located in the cytosol. Recently, human mitoNEET has been shown to be implicated in Fe/S cluster repair of cytosolic iron regulatory protein 1 (IRP1), a key regulator of cellular iron homeostasis in mammalian cells. The Fe/S cluster repair function of mitoNEET is based on an Fe/S redox switch mechanism: under normal cellular conditions, reduced [2Fe–2S]+-mitoNEET is present and is inactive as an Fe/S cluster transfer protein; under conditions of oxidative cellular stress, the clusters of mitoNEET become oxidized, and the formed [2Fe–2S]2+-mitoNEET species reacts promptly to initiate Fe/S cluster transfer to IRP1, recycling the cytosolic apo-IRP1 into holo-aconitase. Until now, no clear data have been available on which is the system that reduces the mitoNEET clusters back once oxidative stress is not present anymore. In the present work, we used UV–vis and NMR spectroscopies to investigate the electron transfer process between mitoNEET and the cytosolic electron-donor Ndor1/anamorsin complex, a component of the cytosolic iron–sulfur protein assembly (CIA) machinery. The [2Fe–2S] clusters of mitoNEET are reduced via the formation of a transient complex that brings the [2Fe–2S] clusters of mitoNEET close to the redox-active [2Fe–2S] cluster of anamorsin. Our data provide in vitro evidence of a possible direct link between the CIA machinery and the mitoNEET cluster transfer repair pathway. This link might contribute to recovery of CIA machinery efficiency to mature cytosolic and nuclear Fe/S proteins.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b05003

DOI: 10.1021/jacs.7b05003

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.