4 years ago

Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface

Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface
Jingguang G. Chen, Shyam Kattel, Ping Liu
The chemical transformation of CO2 not only mitigates the anthropogenic CO2 emission into the Earth’s atmosphere but also produces carbon compounds that can be used as precursors for the production of chemicals and fuels. The activation and conversion of CO2 can be achieved on multifunctional catalytic sites available at the metal/oxide interface by taking advantage of the synergy between the metal nanoparticles and oxide support. Herein, we look at the recent progress in mechanistic studies of CO2 hydrogenation to C1 (CO, CH3OH, and CH4) compounds on metal/oxide catalysts. On this basis, we are able to provide a better understanding of the complex reaction network, grasp the capability of manipulating structure and combination of metal and oxide at the interface in tuning selectivity, and identify the key descriptors to control the activity and, in particular, the selectivity of catalysts. Finally, we also discuss challenges and future research opportunities for tuning the selective conversion of CO2 on metal/oxide catalysts.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b05362

DOI: 10.1021/jacs.7b05362

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.