3 years ago

Implication of graphene oxide in Cd-contaminated soil: A case study of bacterial communities

Implication of graphene oxide in Cd-contaminated soil: A case study of bacterial communities
The application of graphene oxide (GO) has attracted increasing concerns in the past decade regarding its environmental impacts, except for the impact of GO on a metal-contaminated soil system, due to its special properties. In the present work, the effects of GO on the migration and transformation of heavy metals and soil bacterial communities in Cd-contaminant soil were systematically evaluated. Soil samples were exposed to different doses of GO (0, 1, and 2 g kg−1) over 60 days. The Community Bureau of Reference (BCR) sequential extraction procedure was used to reflect the interaction between GO and Cd. Several microbial parameters, including enzyme activities and bacterial community structure, were measured to determine the impacts of GO on polluted soil microbial communities. It was shown that Cd was immobilized by GO throughout the entire exposure period. Interestingly, the structure of the bacterial community changed. The relative abundance of the major bacterial phyla (e.g., Acidobacteria and Actinobacteria) increased, which was possibly attributed to the reduced toxicity of Cd in the presence of GO. However, GO exerted an adverse influence on the relative abundance of some phyla (e.g., WD272 and TM6). The diversity of bacterial communities was slightly restricted. The functional bacteria related to carbon and the nitrogen cycling were also affected, which, consequently, may influence the nutrient cycling in soil.

Publisher URL: www.sciencedirect.com/science

DOI: S0301479717309362

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.