3 years ago

Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping system model

A generic simulation-optimization framework for optimal irrigation and fertilizer scheduling is developed, where the problem is represented in the form of decision-tree graphs, ant colony optimization (ACO) is used as the optimization engine and a process-based crop growth model is applied to evaluate the objective function. Dynamic decision variable option (DDVO) adjustment is used in the framework to reduce the search space size during the generation of trial solutions. The framework is applied for corn production under various levels of water availability and rates of fertilizer application in eastern Colorado, USA. The results indicate that ACO-DDVO is able to identify irrigation and fertilizer schedules that result in better net returns while using less irrigation water and fertilizer than those obtained using the Microsoft Excel spreadsheet-based Colorado Irrigation Scheduler (CIS) tool for annual crops. Another advantage of ACO-DDVO compared to CIS is the identification of both optimal irrigation and fertilizer schedules.

Publisher URL: www.sciencedirect.com/science

DOI: S1364815217303353

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.