3 years ago

Diversification and convergence of aposematic phenotypes: truncated receptors and cellular arrangements mediate rapid evolution of coloration in harlequin poison frogs

Andrés Posso-Terranova, José Á. Andrés
Aposematic signals represent one of the classical systems to study evolution and, as such, they have received considerable empirical and theoretical investigation. Despite the extensive literature on aposematic coloration, much uncertainty remains about genetic changes responsible for the repeated evolution of similar signals in multiple lineages. Here, we study the diversification and convergence of coloration among lineages of aposematic harlequin poison frogs (Oophaga histrionica complex). Our results suggest that different background phenotypes, showing different color and/or luminance contrast, have evolved independently at least twice in this group. We suggest that cellular arrangements are behind the striking diversity of color and patterns in this group and propose that differences in dorsal background color may be related to either or both, the presence/absence of xanthophores and the dispersion of melanosomes. Our genetic analyses support a role for the melanocortin receptor MC1R in melanosome aggregation, and we show evidence that two different mutations (∆433 and C432A) are responsible for the darker phenotypes that may display a more detectable, easier to learn, aposematic signal.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/evo.13335

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.